Mapping ovarian cancer spatial organization uncovers immune evasion drivers at the genetic, cellular, and tissue level

Author:

Yeh Christine Yiwen,Aguirre Karmen,Laveroni Olivia,Kim Subin,Wang Aihui,Liang Brooke,Zhang Xiaoming,Han Lucy M.,Valbuena Raeline,Plevritis Sylvia Katina,Bassik Michael C.,Snyder Michael P.,Howitt Brooke E.,Jerby LivnatORCID

Abstract

SUMMARYImmune exclusion and evasion are central barriers to the success of immunotherapies and cell therapies in solid tumors. Here we applied single cell spatial and perturbational transcriptomics alongside clinical, histological, and genomic profiling to elucidate immune exclusion and evasion in high-grade serous tubo-ovarian cancer (HGSC). Using high-plex spatial transcriptomics we profiled more than 1.3 million cells from 95 tumors and 60 patients, revealing generalizable principles in HGSC tumor tissue organization. Our data demonstrates that effector T cells resist stroma-mediated trapping and sequestration. However, upon infiltration into the tumor, T cells, as well as Natural Killer (NK) cells, preferentially co-localize only with a subset of malignant cells that manifest a distinct transcriptional cell state. The latter consists of dozens of co-regulated genes and is repressed under various copy number alterations. Performing CRISPR Perturb-seq screens in ovarian cancer cells, we identified functionally diverse genetic perturbations – including knockout of the insulin sensing repressorPTPN1and the epigenetic regulatorACTR8– that de-repress the proposed immunogenic malignant cell state identified in patients and indeed sensitize ovarian cancer cells to T cell and NK cell cytotoxicity. Taken together, our study uncovered a profound connection between somatic genetic aberrations, malignant cell transcriptional dysregulation, and immune evasion at the cellular and tissue level, allowing us to identify targets that reprogram malignant cell states as an avenue to unleash anti-tumor immune responses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3