Abstract
AbstractAdaptive value-guided decision-making requires weighing up the costs and benefits of pursuing an available opportunity. Though neurons across frontal cortical-basal ganglia circuits have been repeatedly shown to represent decision-related parameters, it is unclear whether and how this information is coordinated. To address this question, we performed large-scale single unit recordings simultaneously across 5 medial/orbital frontal and basal ganglia regions as rats decided whether to pursue varying reward payoffs available at different effort costs. We found that single neurons encoding combinations of the canonical decision variables (reward, effort and choice) were represented within all recorded brain regions. Co-active cell assemblies - ensembles of neurons that repeatedly co-activated within short time windows (<25ms) within and across structures - were able to provide representations of the same decision variables through the synchronisation of individual neurons with different coding properties. Together, these findings demonstrate a hierarchical encoding structure for cost-benefit computations, where individual neurons with diverse encoding properties are coordinated into larger, low-dimensional spaces within and across brain regions that can signal decision parameters on the millisecond timescale.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献