Inferring state-dependent diversification rates using approximate Bayesian computation (ABC)

Author:

Xie ShuORCID,Valente LuisORCID,Etienne Rampal S.ORCID

Abstract

AbstractState-dependent speciation and extinction (SSE) models provide a framework for quantifying whether species traits have an impact on evolutionary rates and how this shapes the variation in species richness among clades in a phylogeny. However, SSE models are becoming increasingly complex, limiting the application of likelihood-based inference methods. Approximate Bayesian computation (ABC), a likelihood-free approach, is a potentially powerful alternative for estimating parameters. One of the key challenges in using ABC is the selection of efficient summary statistics, which can greatly affect the accuracy and precision of the parameter estimates. In state-dependent diversification models, summary statistics need to capture the complex relationships between rates of diversification and species traits. Here, we develop an ABC framework to estimate state-dependent speciation, extinction and transition rates in the BiSSE (binary state dependent speciation and extinction) model. Using different sets of candidate summary statistics, we then compare the inference ability of ABC with that of using likelihood-based maximum likelihood (ML) and Markov chain Monte Carlo (MCMC) methods. Our results show the ABC algorithm can accurately estimate state-dependent diversification rates for most of the model parameter sets we explored. The inference error of the parameters associated with the species-poor state is larger with ABC than in the likelihood estimations only when the speciation rate is highly asymmetric between the two states (λ1/λ0= 5). Furthermore, we find that the combination of normalized lineage-through-time (nLTT) statistics and phylogenetic signal in binary traits (Fitz and Purvis’sD) constitute efficient summary statistics for the ABC method. By providing insights into the selection of suitable summary statistics, our work aims to contribute to the use of the ABC approach in the development of complex state-dependent diversification models, for which a likelihood is not available.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3