Immune Epitopes of SARS-CoV-2 Spike Protein and Considerations for Universal Vaccine Development

Author:

Magazine Nicholas,Zhang Tianyi,Bungwon Anang D.,McGee Michael C.,Wu Yingying,Veggiani Gianluca,Huang WeishanORCID

Abstract

AbstractDespite the success of global vaccination programs in slowing the spread of COVID-19, these efforts have been hindered by the emergence of new SARS-CoV-2 strains capable of evading prior immunity. The mutation and evolution of SARS-CoV-2 have created a demand for persistent efforts in vaccine development. SARS-CoV-2 Spike protein has been the primary target for COVID-19 vaccine development, but it is also the hotspot of mutations directly involved in host susceptibility and immune evasion. Our ability to predict emerging mutants and select conserved epitopes is critical for the development of a broadly neutralizing therapy or a universal vaccine. In this article, we review the general paradigm of immune responses to COVID-19 vaccines, highlighting the immunological epitopes of Spike protein that are likely associated with eliciting protective immunity resulting from vaccination. Specifically, we analyze the structural and evolutionary characteristics of the SARS-CoV-2 Spike protein related to immune activation and function via the toll-like receptors (TLRs), B cells, and T cells. We aim to provide a comprehensive analysis of immune epitopes of Spike protein, thereby contributing to the development of new strategies for broad neutralization or universal vaccination.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3