Abstract
AbstractAlthough parallel processing has been extensively studied in the low-level geniculostriate pathway and the high-level dorsal and ventral visual streams, much less is known at the intermediate-level visual areas. In this study, we employed high-resolution fMRI at 7 Tesla to investigate the columnar and laminar organizations for color, disparity, and naturalistic texture in the human secondary visual cortex (V2), and its informational connectivity with lower and higher order visual areas. Although fMRI activations in V2 showed clear and reproducible color-selective thin and disparity-selective thick “stripe” columns, we found no evidence for a columnar organization for naturalistic textures. Cortical depth-dependent analyses revealed the strongest color-selectivity in the superficial layers of V2, along with both feedforward and feedback informational connectivity with V1 and V4. Disparity selectivity was similar across different cortical depths of V2, which showed significant feedforward and feedback connectivity with V1 and V3ab. Interestingly, the selectivity for naturalistic texture was strongest in the deep layers of V2, with significant feedback connectivity from V4. Thus, while local circuitry within cortical columns is crucial for processing color and disparity information, feedback modulations from V4 play a dominant role in processing naturalistic statistics in area V2, which lacks a clear columnar organization.
Publisher
Cold Spring Harbor Laboratory