EV-Elute: a universal platform for enrichment of functional surface marker-defined extracellular vesicle subpopulations

Author:

de Voogt Willemijn S,Frunt Rowan,Leandro Raul M,Triesscheijn Casper S,Monica Bella,Paspali Ioanna,Tielemans Mark,Francois Jerney JJM,Seinen Cor W,de Jong Olivier GORCID,Kooijmans Sander AAORCID

Abstract

AbstractIntercellular communication via extracellular vesicles (EVs) has been identified as a vital component of a steadily expanding number of physiological and pathological processes. To accommodate these roles, EVs are equipped with specific proteins, lipids, and RNA molecules by EV-secreting cells. Consequently, EVs have highly heterogeneous molecular compositions. Given that surface molecules on EVs determine their interactions with their environment, it is conceivable that EV functionality differs between subpopulations with varying surface compositions. However, it has been technically challenging to examine such functional heterogeneity due to a lack of non-destructive methods to separate EV subpopulations based on their surface markers. Here, we used Design-of-Experiments methodology to rapidly optimize a protocol, which we name ‘EV-Elute’, to elute intact EVs from commercially available Protein G-coated magnetic beads. We captured EVs from various cell types on these beads using antibodies against CD9, CD63, CD81 and a custom-made protein binding phosphatidylserine (PS). When applying EV-Elute, over 70% of bound EVs could be recovered from the beads in a pH– and incubation time-dependent fashion. EV subpopulations were found to be devoid of co-isolated protein contaminants observed in whole EV isolates and showed intact morphology by electron microscopy. Proteinase K protection assays showed a mild and reversible decrease of EV membrane integrity during elution. Depending on the type of capturing antibody used, some antibodies remained EV-associated after elution. EV subpopulations showed uptake patterns similar to whole EV isolates in co-cultures of peripheral blood mononuclear cells and endothelial cells. However, in Cas9/sgRNA delivery assays, CD63+EVs showed a lower capacity to functionally deliver cargo as compared to CD9+, CD81+and PS+EVs. Taken together, we developed a novel, easy-to-use platform to isolate and functionally compare surface marker-defined EV subpopulations. Importantly, this platform does not require specialized equipment or reagents and is universally applicable to any capturing antibody and EV source. Hence, EV-Elute can open new opportunities to study EV functionality at the subpopulation level.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3