Joint inference of discrete cell types and continuous type-specific variability in single-cell datasets with MMIDAS

Author:

Marghi YeganehORCID,Gala RohanORCID,Baftizadeh FahimehORCID,Sümbül UygarORCID

Abstract

Reproducible definition and identification of cell types is essential to enable investigations into their biological function, and understanding their relevance in the context of development, disease and evolution. Current approaches model variability in data as continuous latent factors, followed by clustering as a separate step, or immediately apply clustering on the data. Clusters obtained in this manner are considered as putative cell types in atlas-scale efforts such as those for mammalian brains. We show that such approaches can suffer from qualitative mistakes in identifying cell types robustly, particularly when the number of such cell types is in the hundreds or even thousands. Here, we propose an unsupervised method, MMIDAS (Mixture Model Inference with Discrete-coupled AutoencoderS), which combines a generalized mixture model with a multi-armed deep neural network, to jointly infer the discrete type and continuous type-specific variability. We develop this framework in a way that can be applied to analysis of both uni-modal and multi-modal datasets. Using four recent datasets of brain cells spanning different technologies, species, and conditions, we demonstrate that MMIDAS significantly outperforms state-of-the-art models in inferring interpretable discrete and continuous representations of cellular identity, and uncovers novel biological insights. Our unsupervised framework can thus help researchers identify more robust cell types, study cell type-dependent continuous variability, interpret such latent factors in the feature domain, and study multi-modal datasets.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3