SEM: sized-based expectation maximization for characterizing nucleosome positions and subtypes

Author:

Yang Jianyu,Yen Kuangyu,Mahony ShaunORCID

Abstract

ABSTRACTGenome-wide nucleosome profiles are predominantly characterized using MNase-seq, which involves extensive MNase digestion and size selection to enrich for mono-nucleosome-sized fragments. Most available MNase-seq analysis packages assume that nucleosomes uniformly protect 147bp DNA fragments. However, some nucleosomes with atypical histone or chemical compositions protect shorter lengths of DNA. The rigid assumptions imposed by current nucleosome analysis packages ignore variation in nucleosome lengths, potentially blinding investigators to regulatory roles played by atypical nucleosomes.To enable the characterization of different nucleosome types from MNase-seq data, we introduce the Size-based Expectation Maximization (SEM) nucleosome calling package. SEM employs a hierarchical Gaussian mixture model to estimate the positions and subtype identity of nucleosomes from MNase-seq fragments. Nucleosome subtypes are automatically identified based on the distribution of protected DNA fragment lengths at nucleosome positions. Benchmark analysis indicates that SEM is on par with existing packages in terms of standard nucleosome-calling accuracy metrics, while uniquely providing the ability to characterize nucleosome subtype identities.Using SEM on a low-dose MNase H2B MNase-ChIP-seq dataset from mouse embryonic stem cells, we identified three nucleosome types: short-fragment nucleosomes, canonical nucleosomes, and dinucleosomes. The short-fragment nucleosomes can be divided further into two subtypes based on their chromatin accessibility. Interestingly, the subset of short-fragment nucleosomes in accessible regions exhibit high MNase sensitivity and display distribution patterns around transcription start sites (TSSs) and CTCF peaks, similar to the previously reported “fragile nucleosomes”. These SEM-defined accessible short-fragment nucleosomes are found not just in promoters, but also in enhancers and other regulatory regions. Additional investigations reveal their co-localization with the chromatin remodelers Chd6, Chd8, and Ep400.In summary, SEM provides an effective platform for distinguishing various nucleosome subtypes, paving the way for future exploration of non-standard nucleosomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3