Fatty acid metabolism in neutrophils promotes lung damage and bacterial replication during tuberculosis

Author:

Sankar Poornima,Ramos Ramon Bossardi,Corro Jamie,Saqib Mohd,Nafiz Tanvir Noor,Bhargavi Gunapati,Ojha Anil KORCID,Cai Yi,Subbian SelvakumarORCID,Mishra Bibhuti B.ORCID

Abstract

ABSTRACTMycobacterium tuberculosis(Mtb) infection triggers a significant influx of neutrophils to the lungs, which is linked to tuberculosis (TB) severity. The mechanism by which Mtb infection induces neutrophillic inflammation remains unclear. Using a clinically relevant and hypervirulent Mtb strain from the W-Beijing family, HN878, we found that genes related to both glycolysis and fatty acid metabolism are upregulated in the lung neutrophils of susceptible mice. Similar effects in gene expression were observed in rabbits, and humans with pulmonary TB compared to healthy controls. Inhibiting glycolysis with 2-deoxy D-glucose (2-DG) exacerbated disease pathology, while fatty acid oxidation (FAO) inhibitor Etomoxir (ETO) improved outcomes by reducing weight loss, immunopathology, and bacterial replication within neutrophils in genetically susceptible mice. Notably, ETO reduced neutrophil production in the bone marrow and their recruitment to the lungs. ETO specifically restrained the recruitment of Ly6Glow/dimimmature neutrophil population, which is elevated during disease progression and harbors the bulk of bacilli. In a transwell setup, we demonstrated that ETO dose-dependently inhibited neutrophil chemotaxis towards infected macrophages. In summary, our research highlights the crucial role of fatty acid metabolism in regulating neutrophilic inflammation during TB and provides a rationale for targeting immunometabolism of neutrophils for potential TB treatment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3