Evaluating the life-extending potential and safety profile of rapamycin: a Mendelian Randomization study of the mTOR pathway

Author:

Sobczyk Maria KORCID,Gaunt Tom RORCID

Abstract

AbstractObjectiveThe mechanistic target of rapamycin (mTOR) pathway plays an integral role in cellular metabolism, growth, and aging. While rapamycin and its analogs inhibit the mTOR pathway, extending lifespan in various organisms, the long-term safety and efficacy of these compounds in humans remain understudied.MethodsUtilizing two mTOR expression QTL instruments derived from the eQTLgen and MetaBrain studies, we sought to explore the potential causal relationship between mTOR expression inhibition in blood and brain cortex (mimicking chronic rapamycin use), and its effects on longevity, cardiometabolic disease, prostate cancer and anthropometric risk factors. Subsequently, we extended the selection of instruments to 47 other members of the mTOR pathway. To complement this Mendelian randomization (MR) evidence, we conducted genetic colocalisation and sampling-based enrichment testing.ResultsOur findings suggest that genetically proxied mTOR inhibition may increase the odds of attaining top 1% longest lifespan in the population (OR=1.24, OR95%CI=1-1.53, p-value=0.048). Moreover, mTOR inhibition significantly reduced body mass index (BMI), basal metabolic rate (BMR), height, and age at menopause, while increasing bone mineral density. Interestingly, there was generally little evidence linking mTOR inhibition to cardiovascular disease incidence, with the exception of weak evidence for a protective effect against heart failure (OR=0.94, OR95%CI=0.89-0.99, p-value=0.039). Chronic mTOR inhibition did not causally affect prostate cancer incidence but increased the risk of developing type 2 diabetes. A higher-than-expected (p-value = 0.05) number of genes in the mTOR pathway were causally associated with BMR.ConclusionsThis study highlights the potential lifespan-extending effects of mTOR inhibition and its significant influence on metabolic risk factors and disease. Members of the mTOR complex, especially mTORC1, play a disproportionate role in influencing BMR and BMI, which provides valuable insight for potential therapeutic target development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3