CarDS-Plus ECG Platform: Development and Feasibility Evaluation of a Multiplatform Artificial Intelligence Toolkit for Portable and Wearable Device Electrocardiograms

Author:

Shankar Sumukh VasishtORCID,Oikonomou Evangelos KORCID,Khera RohanORCID

Abstract

AbstractIn the rapidly evolving landscape of modern healthcare, the integration of wearable and portable technology provides a unique opportunity for personalized health monitoring in the community. Devices like the Apple Watch, FitBit, and AliveCor KardiaMobile have revolutionized the acquisition and processing of intricate health data streams that were previously accessible only through devices only available to healthcare providers. Amidst the variety of data collected by these gadgets, single-lead electrocardiogram (ECG) recordings have emerged as a crucial source of information for monitoring cardiovascular health. Notably, there has been significant advances in artificial intelligence capable of interpreting these 1-lead ECGs, facilitating clinical diagnosis as well as the detection of rare cardiac disorders. This design study describes the development of an innovative multi-platform system aimed at the rapid deployment of AI-based ECG solutions for clinical investigation and care delivery. The study examines various design considerations, aligning them with specific applications, and develops data flows to maximize efficiency for research and clinical use. This process encompasses the reception of single-lead ECGs from diverse wearable devices, channeling this data into a centralized data lake, and facilitating real-time inference through AI models for ECG interpretation. An evaluation of the platform demonstrates a mean duration from acquisition to reporting of results of 33.0 to 35.7 seconds, after a standard 30 second acquisition, allowing the complete process to be completed in 63.0 to 65.7 seconds. There were no substantial differences in acquisition to reporting across two commercially available devices (Apple Watch and KardiaMobile). These results demonstrate the succcessful translation of design principles into a fully integrated and efficient strategy for leveraging 1-lead ECGs across platforms and interpretation by AI-ECG algorithms. Such a platform is critical to translating AI discoveries for wearable and portable ECG devices to clinical impact through rapid deployment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3