Long-distance tmFRET using bipyridyl- and phenanthroline-based ligands

Author:

Gordon Sharona E.,Evans Eric G. B.,Otto Shauna C.,Tessmer Maxx H.,Shaffer Kyle D.,Gordon Moshe T.,Petersson E. James,Stoll Stefan,Zagotta William N.ORCID

Abstract

ABSTRACTWith the great progress on determining protein structures over the last decade comes a renewed appreciation that structures must be combined with dynamics and energetics to understand function. Fluorescence spectroscopy, specifically Förster resonance energy transfer (FRET), provides a great window into dynamics and energetics due to its application at physiological temperatures and ability to measure dynamics on the ångström scale. We have recently advanced transition metal FRET (tmFRET) to study allosteric regulation of maltose binding protein and have reported measurements of maltose- dependent distance changes with an accuracy of ∼1.5 Å. When paired with the noncanonical amino acid Acd as a donor, our previous tmFRET acceptors were useful over a working distance of 10 Å to 20 Å. Here, we use cysteine-reactive bipyridyl and phenanthroline compounds as chelators for Fe2+and Ru2+to produce novel tmFRET acceptors to expand the working distance to as long as 50 Å, while preserving our ability to resolve even small maltose-dependent changes in distance. We compare our measured FRET efficiencies to predictions based on models using rotameric ensembles of the donors and acceptors to demonstrate that steady-state measurements of tmFRET with our new probes have unprecedented ability to measure conformational rearrangements under physiological conditions.STATEMENT OF SIGNIFICANCEIn this work, we expand the working distance of transition metal ion Förster Resonance Energy Transfer (tmFRET) to allow the measurement of donor-acceptor distances from 10 Å to 50 Å. We develop new cysteine-reactive bipyridyl- and phenanthroline-based ligands for Cu2+, Fe2+, and Ru2+and examine their ability to resolve small ligand-dependent distance changes in maltose binding protein. We extend these studies using pulsed electron paramagnetic resonance spectroscopy to demonstrate the high accuracy of tmFRET for studying protein allostery.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3