Generalisability of AI-based scoring systems in the ICU: a systematic review and meta-analysis

Author:

Rockenschaub PatrickORCID,Akay Ela Marie,Carlisle Benjamin GregoryORCID,Hilbert AdamORCID,Meyer-Eschenbach Falk,Näher Anatol-FieteORCID,Frey DietmarORCID,Madai Vince IstvanORCID

Abstract

AbstractBackgroundMachine learning (ML) is increasingly used to predict clinical deterioration in intensive care unit (ICU) patients through scoring systems. Although promising, such algorithms often overfit their training cohort and perform worse at new hospitals. Thus, external validation is a critical – but frequently overlooked – step to establish the reliability of predicted risk scores to translate them into clinical practice. We systematically reviewed how regularly external validation of ML-based risk scores is performed and how their performance changed in external data.MethodsWe searched MEDLINE, Web of Science, and arXiv for studies using ML to predict deterioration of ICU patients from routine data. We included primary research published in English before April 2022. We summarised how many studies were externally validated, assessing differences over time, by outcome, and by data source. For validated studies, we evaluated the change in area under the receiver operating characteristic (AUROC) attributable to external validation using linear mixed-effects models.ResultsWe included 355 studies, of which 39 (11.0%) were externally validated, increasing to 17.9% by 2022. Validated studies made disproportionate use of open-source data, with two well-known US datasets (MIMIC and eICU) accounting for 79.5% of studies. On average, AUROC was reduced by -0.037 (95% CI -0.064 to -0.017) in external data, with >0.05 reduction in 38.6% of studies.DiscussionExternal validation, although increasing, remains uncommon. Performance was generally lower in external data, questioning the reliability of some recently proposed ML-based scores. Interpretation of the results was challenged by an overreliance on the same few datasets, implicit differences in case mix, and exclusive use of AUROC.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3