Centromere-Proximal Suppression of Meiotic Crossovers inDrosophilais Robust to Changes in Centromere Number and Repetitive DNA Content

Author:

Pazhayam Nila M.,Frazier Leah K.ORCID,Sekelsky JeffORCID

Abstract

AbstractAccurate segregation of homologous chromosomes during meiosis depends on both the presence and regulated placement of crossovers (COs). The centromere effect (CE), or CO exclusion in pericentromeric regions of the chromosome, is a meiotic CO patterning phenomenon that helps prevent nondisjunction (NDJ), thereby protecting against chromosomal disorders and other meiotic defects. Despite being identified nearly a century ago, the mechanisms behind this fundamental cellular process remain unknown, with most studies of theDrosophilaCE focusing on local influences of the centromere and pericentric heterochromatin. In this study, we sought to investigate whether dosage changes in centromere number and repetitive DNA content affect the strength of the CE, using phenotypic recombination mapping. Additionally, we also studied the effects of repetitive DNA function on CE strength using satellite-DNA binding protein mutants shown to have defective centromere clustering. Despite what previous studies suggest, our results show that theDrosophilaCE is robust to dosage changes in centromere number and repetitive DNA content, and potentially also to repetitive DNA function. Our study suggests that the CE is unlikely to be spatially controlled, providing novel insight into the mechanisms behind theDrosophilacentromere effect.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3