Aberrant macrophage activation and failed regeneration of pulmonary epithelium promote tuberculosis progression uniquely in lung tissue

Author:

Yabaji Shivraj M.ORCID,Lo Ming,Lata SuruchiORCID,Gavrish IgorORCID,Tseng Anna E.,O’Connell Aoife K,Gertje Hans P,Mazzilli Sarah,Tan Shumin,Thurman Colleen E,Bishai William RORCID,Crossland NicholasORCID,Kobzik LesterORCID,Kramnik IgorORCID

Abstract

AbstractPulmonary TB that develops in immunocompetent adult humans is responsible for approximately 85% of the disease burden and is central for Mtb transmission. Most humans contain Mtb infection within primary granulomatous lesions, but in certain immunocompetent humans, containment fails, leading to hematogenous spread and active pulmonary disease with the formation of necrotic lesions and cavities that enable Mtb transmission via aerosols. To reveal lung-specific microenvironments conducive for Mtb survival and replication despite systemic immunity, we use fluorescence multiplex immunohistochemistry and spatial transcriptomic analyses of heterogenous TB lesions that uniquely form in the lungs of immunocompetent but TB-susceptible B6.Sst1S mice after hematogenous spread from the primary lesion. Initially, these secondary lung lesions manifested local adoptive immunity featuring tertiary lymphoid follicles similar to resistant B6 mice and contained primarily non-replicating bacilli. Following these early events, however, the B6.Sst1S mice uniquely demonstrate expansion of myeloid cell populations with the appearance of alternatively activated macrophages, dissolution of lymphoid follicles, and the accumulation of de-differentiated lung epithelial cells. These processes led to bronchogenic expansion, broncho-occlusion, and necrosuppurative pneumonia closely resembling advanced pulmonary tuberculosis in humans. To determine whether lung parenchymal cells or lung oxygenation were necessary for the pulmonary TB progression, we implanted lung and spleen fragments subcutaneously prior to the infection. The lung implants uniquely displayed the formation of the characteristic organized granulomas with necrosis and Mtb replication that paralleled TB progression in native lungs, demonstrating that the cellular composition of inflamed lung tissue, not oxygenation, is a critical determinant of pulmonary TB progression. Our data demonstrate that deleterious bi-directional interactions of aberrantly activated macrophages with the inflammation-injured lung resident cells determine lung vulnerability to virulent Mtb in immunocompetent hosts. Because these mechanisms enable Mtb transmission among humans via aerosols, they are likely evolutionary conserved and, therefore, represent appealing targets for host-directed TB therapies.

Publisher

Cold Spring Harbor Laboratory

Reference75 articles.

1. WHO, Global Health TB Report. https://www.who.int/tb/publications/global_report/en/, (2022).

2. A. R. Rich , The pathogenesis of tuberculosis (Thomas, Springfield, Ill.,, ed. 2d, 1951), pp. xxvii, 1028 p.

3. Immunopathogenesis of pulmonary tuberculosis;Hosp Pract (Off Ed),1993

4. The Tuberculous Granuloma and Preexisting Immunity

5. Tuberculosis;Nat Rev Dis Primers,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3