The Minimal Dataset for Cancer of the 1+Million Genomes Initiative

Author:

Riba MichelaORCID,Sala CinziaORCID,Culhane AedinORCID,Flobak ÅsmundORCID,Patocs AttilaORCID,Boye KjetilORCID,Plevova KarlaORCID,Pospíšilová ŠárkaORCID,Gandolfi GiorgiaORCID,Morelli Marco JORCID,Bucci GabrieleORCID,Edsjö AndersORCID,Lassen UlrikORCID,Al-Shahrour FátimaORCID,Lopez-Bigas NuriaORCID,Hovland RandiORCID,Cuppen EdwinORCID,Valencia AlfonsoORCID,Antoine-Poirel HeleneORCID,Brandell Richard RosenquistORCID,Scollen SerenaORCID,Marquez Juan ArenasORCID,Belien JeroenORCID,De Nicolo ArcangelaORCID,De Maria RuggeroORCID,Torrents DavidORCID,Tonon GiovanniORCID

Abstract

AbstractFor a real impact on healthcare, precision cancer medicine requires accessibility and interoperability of clinical and genomic data across centres and countries. Due to the heterogeneous digitization in Europe and worldwide, the definition of models for standardised data collection and usability becomes mandatory if countries want to work together on this mission. The European Union 1+Million Genomes (1+MG) initiative, supported by the Horizon 2020 Beyond 1 Million Genomes project, aims at outlining data models, guidance, best practices, and technical infrastructures for transnational access to sequenced genomes, including cancer genomes. Within the framework of the cancer-focused Working Group 9, we developed the 1+MG-Minimal Dataset for Cancer (1+MG-MDC)–a data model encompassing 140 items and organized in eight conceptual domains for the collection of cancer-related clinical information and genomics metadata. The 1+MG-MDC, which results from a multidisciplinary effort, leverages pre-existing models and emphasizes the annotation and traceability of multiple aspects relevant to the complex longitudinal path of the cancer disease and its treatment. We strived to make the 1+MG-MDC easy to adopt, yet comprehensive, addressing the needs of both clinicians and researchers. We will periodically revise and update it to ensure it remains fit for purpose. We propose the 1+MG-MDC as a model to create homogeneous databases, which would, in turn, guide discussions on clinical and genomic features with prognostic or therapeutic value and foster real-world data research.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3