CryoTransformer: A Transformer Model for Picking Protein Particles from Cryo-EM Micrographs

Author:

Dhakal AshwinORCID,Gyawali RajanORCID,Wang Liguo,Cheng JianlinORCID

Abstract

AbstractCryo-electron microscopy (cryo-EM) is a powerful technique for determining the structures of large protein complexes. Picking single protein particles from cryo-EM micrographs (images) is a crucial step in reconstructing protein structures from them. However, the widely used template-based particle picking process requires some manual particle picking and is labor-intensive and time-consuming. Though machine learning and artificial intelligence (AI) can potentially automate particle picking, the current AI methods pick particles with low precision or low recall. The erroneously picked particles can severely reduce the quality of reconstructed protein structures, especially for the micrographs with low signal-to-noise (SNR) ratios. To address these shortcomings, we devised CryoTransformer based on transformers, residual networks, and image processing techniques to accurately pick protein particles from cryo-EM micrographs. CryoTransformer was trained and tested on the largest labelled cryo-EM protein particle dataset - CryoPPP. It outperforms the current state-of-the-art machine learning methods of particle picking in terms of the resolution of 3D density maps reconstructed from the picked particles as well as F1-score and is poised to facilitate the automation of the cryo-EM protein particle picking.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

1. Stroboscopic imaging of macromolecular complexes

2. Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function

3. Artificial intelligence in the prediction of protein–ligand interactions: recent advances and future directions

4. Improving Protein–Ligand Interaction Modeling with cryo-EM Data, Templates, and Deep Learning in 2021 Ligand Model Challenge

5. A. Dhakal , R. Gyawali , and J. Cheng , “Predicting Protein-Ligand Binding Structure Using E(n) Equivariant Graph Neural Networks,” bioRxiv, p. 2023.08.06.552202, 2023, [Online]. Available: http://biorxiv.org/content/early/2023/08/07/2023.08.06.552202.abstract.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3