Abstract
ABSTRACTThe transformation of fibroblasts into epithelial cells is critical for iPSC reprogramming. In this report, we describe studies with PFI-3, a small molecule inhibitor that specifically targets the bromodomains of SMARCA2/4 and PBRM1 subunit of SWI/SNF complex, as an enhancer of iPSC reprogramming efficiency. Our findings revealed that PFI-3 induces cellular plasticity in multiple human dermal fibroblasts, leading to a mesenchymal-epithelial transition (MET) during iPSC formation. This transition was characterized by the upregulation of E-cadherin expression, a key protein involved in epithelial cell adhesion. Additionally, we identified COL11A1 as a reprogramming barrier and demonstrated COL11A1 knockdown increased reprogramming efficiency. Notably, we found that PFI-3 significantly reduced the expression of numerous extracellular matrix (ECM) genes, particularly those involved in collagen assembly. Our research provides key insights into the early stages of iPSC reprogramming, highlighting the crucial role of ECM changes and cellular plasticity in this process.
Publisher
Cold Spring Harbor Laboratory