Transposon-triggered epigenetic chromatin dynamics modulate EFR-related pathogen response

Author:

Mencia Regina,Arce Agustín L.,Houriet Candela,Xian Wenfei,Contreras Adrián,Shirsekar Gautam,Weigel Detlef,Manavella Pablo A.ORCID

Abstract

SummaryInfectious diseases drive the evolution of wild plants and impact yield in crop plants. Like animals, plants can sense biotic threats via conserved pathogen-associated patterns (PAMPs). Since an overly robust immune response can harm plants, understanding the mechanisms for tuning defense responses to the appropriate level is vital as we endeavor to develop pathogen-resistant crops. In this paper, we studied the Arabidopsis pattern recognition receptor (PRR) EFR, which senses bacterial EF-Tu. An inverted-repeat transposon (Ea-IR) betweenEFRand the neighboringXI-klocus controls local chromatin organization, promoting the formation of a repressive chromatin loop. Upon pathogen infection, the chromatin landscape aroundEFRandXl-kdynamically changes to allow for increasedEFRtranscription. Chromatin opening facilitates the passage of RNA polymerase II across the neighboringXI-kgene termination site, leading to a longerXI-ktranscript that includesEa-IRsequences. Dicer-like (DCL) enzymes process the longer Xl-k transcript into small RNAs (sRNAs), which reset chromatin topology to a repressive state, attenuating, in turn, the immune response, reminiscent of attenuation of receptor signaling in other systems. From an evolutionary point of view, we found that natural Arabidopsis accessions missingEa-IRhave a constitutive "EFR-open" chromatin configuration that correlates with higher basal EFR levels and higher background resistance to pathogens. Collectively, our study offers evidence for a scenario in which a transposon, chromatin organization, and gene expression interact to fine-tune immune responses, both during the course of infection and in the course of evolution. Similar gene-associated IRs in crops could provide valuable non-coding targets for genome editing or assisted plant breeding programs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3