Scaling cross-tissue single-cell annotation models

Author:

Fischer Felix,Fischer David S.ORCID,Biederstedt Evan,Villani Alexandra-Chloé,Theis Fabian J.ORCID

Abstract

Identifying cellular identities (both novel and well-studied) is one of the key use cases in single-cell transcriptomics. While supervised machine learning has been leveraged to automate cell annotation predictions for some time, there has been relatively little progress both in scaling neural networks to large data sets and in constructing models that generalize well across diverse tissues and biological contexts up to whole organisms. Here, we propose scTab, an automated, feature-attention-based cell type prediction model specific to tabular data, and train it using a novel data augmentation scheme across a large corpus of single-cell RNA-seq observations (22.2 million human cells in total). In addition, scTab leverages deep ensembles for uncertainty quantification. Moreover, we account for ontological relationships between labels in the model evaluation to accommodate for differences in annotation granularity across datasets. On this large-scale corpus, we show that cross-tissue annotation requires nonlinear models and that the performance of scTab scales in terms of training dataset size as well as model size - demonstrating the advantage of scTab over current state-of-the-art linear models in this context. Additionally, we show that the proposed data augmentation schema improves model generalization. In summary, we introduce a de novo cell type prediction model for single-cell RNA-seq data that can be trained across a large-scale collection of curated datasets from a diverse selection of human tissues and demonstrate the benefits of using deep learning methods in this paradigm. Our codebase, training data, and model checkpoints are publicly available athttps://github.com/theislab/scTabto further enable rigorous benchmarks of foundation models for single-cell RNA-seq data.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3