Experimental exposure to winter thaws reveals tipping point in yellow birch bud mortality and phenology in the northern temperate forest of Québec, Canada

Author:

Marquis Benjamin,Lajoie GenevièveORCID

Abstract

AbstractClimate change is expected to increase the frequency and intensity of winter thaws, which could have two contrasting effects on leaf phenology. Phenology could either be advanced through the acceleration of forcing accumulation or chilling completion, or be postponed through a reduction in chilling associated with warming air temperature. We tested the influence of winter thaws on budburst phenology by exposing 300 tree cuttings of sugar maple and yellow birch trees to five different frequencies and durations of winter thaws in the lab. In spring, half of the cuttings were exposed to air temperature in two cities representing an air temperature gradient of + 2.0 °C to mimic the ongoing climate warming and bud phenology was monitored three times a week. Irrespective of thaw treatment, yellow birch phenology occurred earlier in the warmer city, showing the importance of spring temperature in triggering budburst. The treatment with the highest frequency and duration of thawing increased bud mortality and delayed the onset of spring phenology whereas low frequency treatments did not, thereby identifying a tipping point in the impact of winter thaws on bud phenology. Past this point, winter thaws could slow the acceleration of bud phenology induced by warmer spring temperature and limit carbon uptake by delaying the closure of the canopy. Climate change simulations projected by the CMIP6 Canadian downscaled climate scenario show that winter thaws will increase in frequency. Hence the expected advance in the spring phenology associated with warmer spring is not necessarily as straightforward as previously thought.Graphical abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3