Abstract
AbstractWe present a novel and interpretable approach for predicting small-molecule binding affinities using context explanation networks (CENs). Given the specific structure of a protein/ligand complex, our CENsible scoring function uses a deep convolutional neural network to predict the contributions of pre-calculated terms to the overall binding affinity. We show that CENsible can effectively distinguish active vs. inactive compounds for many systems. Its primary benefit over related machine-learning scoring functions, however, is that it retains interpretability, allowing researchers to identify the contribution of each pre-calculated term to the final affinity prediction, with implications for subsequent lead optimization.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献