LIFE: A Deep Learning Framework for Laboratory Data Imputation in Electronic Health Records

Author:

Heilbroner Samuel P.,Carter Curtis,Vidmar David M.,Mueller Erik T.,Stumpe Martin C.,Miotto Riccardo

Abstract

AbstractLaboratory data in electronic health records (EHRs) is an effective source of information to characterize patient populations, inform accurate diagnostics and treatment decisions, and fuel research studies. However, despite their value, laboratory values are underutilized due to high levels of missingness. Existing imputation methods fall short, as they do not fully leverage patient clinical histories and are commonly not scalable to the large number of tests available in real-world data (RWD). To address these shortcomings, we present Laboratory Imputation Framework using EHRs (LIFE), a deep learning framework based on multi-head attention that is trained to impute any laboratory test value at any point in time in the patient’s journey using their complete EHRs. This architecture (1) eliminates the need to train a different model for each laboratory test by jointly modeling all laboratory data of interest; and (2) better clinically contextualizes the predictions by leveraging additional EHR variables, such as diagnosis, medications, and discrete laboratory results. We validate our framework using a large-scale, real-world dataset encompassing over 1 million oncology patients. Our results demonstrate that LIFE obtains superior or equivalent results compared to state-of-the-art baselines in 23 out of 25 evaluated laboratory tests and better enhances a downstream adverse event detection task in 7 out of 9 cases, showcasing its potential in efficiently estimating missing laboratory values and, consequently, in transforming the utilization of RWD in healthcare.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3