Progression Subtypes in Parkinson’s Disease: A Data-driven Multi-Cohort Analysis

Author:

Hähnel TomORCID,Raschka Tamara,Sapienza Stefano,Klucken Jochen,Glaab Enrico,Corvol Jean-Christophe,Falkenburger Björn,Fröhlich Holger

Abstract

AbstractBackgroundThe progression of Parkinson’s disease (PD) is heterogeneous across patients. This heterogeneity complicates patients counseling and inflates the number of patients needed to test potential neuroprotective treatments. Moreover, disease subtypes might require different therapies. This work uses a data-driven approach to investigate how observed heterogeneity in PD can be explained by the existence of distinct PD progression subtypes.MethodsTo derive stable PD progression subtypes in an unbiased manner, we analyzed multimodal longitudinal data from three large PD cohorts. A latent time joint mixed-effects model (LTJMM) was used to align patients on a common disease timescale. Progression subtypes were identified by variational deep embedding with recurrence (VaDER). These subtypes were then characterized across the three cohorts using clinical scores, DaTSCAN imaging and digital gait biomarkers. To assign patients to progression subtypes from baseline data, we developed predictive models and performed extensive cross-cohort validation.ResultsIn each cohort, we identified a fast-progressing and a slow-progressing subtype. These subtypes were reflected by different patterns of motor and non-motor symptoms progression, survival rates, treatment response and features extracted from DaTSCAN imaging and digital gait assessments. Predictive models achieved robust performance with ROC-AUC up to 0.79 for subtype identification. Simulations demonstrated that enriching clinical trials with fast-progressing patients based on predictions from baseline can reduce the required cohort size by 43%.ConclusionOur results show that heterogeneity in PD can be explained by two distinct subtypes of PD progression that are stable across cohorts and can be predicted from baseline data. These subtypes align with the brain-first vs. body-first concept, which potentially provides a biological explanation for subtype differences. The predictive models will enable clinical trials with significantly lower sample sizes by enriching fast-progressing patients.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3