Continuous Tracking using Deep Learning-based Decoding for Non-invasive Brain-Computer Interface

Author:

Forenzo DylanORCID,Zhu Hao,Shanahan Jenn,Lim Jaehyun,He BinORCID

Abstract

AbstractBrain-computer interfaces (BCI) using electroencephalography (EEG) provide a non-invasive method for users to interact with external devices without the need for muscle activation. While noninvasive BCIs have the potential to improve the lives of both healthy and motor impaired individuals, they currently have limited applications due to inconsistent performance and low degrees of freedom. In this study, we use deep-learning (DL)-based decoders for online Continuous Pursuit (CP), a complex BCI task requiring the user to track an object in 2D space. We developed a new labelling system to use CP data for supervised learning, trained DL-based decoders based on two architectures, including a newly proposed adaptation of the PointNet architecture, and evaluated the performance over several online sessions. We rigorously evaluated the DL-based decoders in a total of 28 human subjects, and found that the DL-based models improved throughout the sessions as more training data became available and significantly outperformed a traditional BCI decoder by the last session. We also performed additional experiments to test an implementation of transfer learning by pre-training models on data from other subjects, and mid-session training to reduce inter-session variability. The results from these experiments show that pre-training did not significantly improve performance, but updating the models mid-session may have some benefit. Overall, these findings support the use of DL-based decoders for improving BCI performance in complex tasks like CP, which can expand the potential applications of BCI devices and help improve the lives of both healthy individuals and motor-impaired patients.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3