The structural OFF and ON states of myosin can be decoupled from the biochemical super-relaxed and disordered-relaxed states

Author:

Ma WeikangORCID,Jani Vivek P.,Song Taejeong,Gao Chengqian,Gong Henry,Sadayappan SakthivelORCID,Kass David A.ORCID,Irving Thomas C.

Abstract

AbstractThere is a growing awareness that both thick filament and classical thin filament regulation play central roles in modulating muscle contraction. Myosin ATPase assays have demonstrated that under relaxed conditions, myosin may reside in either a high energy-consuming disordered-relaxed (DRX) state available for binding actin to generate force, or in an energy-sparing super-relaxed (SRX) state unavailable for actin binding. X-ray diffraction studies have shown the majority of myosin heads are in a quasi-helically ordered OFF state in a resting muscle and that this helical ordering is lost when myosin heads are turned ON for contraction. It has been assumed that myosin heads in SRX and DRX states are equivalent to the OFF and ON state respectively and the terms have been used interchangeably. Here, we use X-ray diffraction and ATP turnover assays to track the structural and biochemical transitions of myosin heads respectively induced with either omecamtiv mecarbil (OM) or piperine in relaxed porcine myocardium. We find that while OM and piperine induce dramatic shifts of myosin heads from the OFF to ON states, there are no appreciable changes in the population of myosin heads in the SRX and DRX states in both unloaded and loaded preparations. Our results show that biochemically defined SRX and DRX can be decoupled from structurally-defined OFF and ON states. In summary, while SRX/DRX and OFF/ON transitions can be correlated in some cases, these two phenomena are measured using different approaches, do not necessarily reflect the same properties of the thick filament and should be investigated and interpreted separately.SignificanceMyosin based thick filament regulation is now known to be critical for muscle contraction with myosin dysregulation found in hypertrophic and dilated cardiomyopathies. While previously thought to be synonymous, this study finds that biochemical and structural thick filament disengagement are distinct properties and should be investigated as independent phenomena. Understanding the details of thick filament regulation will be of great relevance to defining sarcomere-level dysfunction in myopathies and understanding and better designing and testing sarcomere therapies aimed at reversing them for treatment of cardiomyopathy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3