Cerebral Spinal Fluid Volumetrics and Paralimbic Predictors of Executive Dysfunction in Congenital Heart Disease: A Machine Learning Approach Informing Mechanistic Insights

Author:

Lee Vince K.,Wallace Julia,Meyers Benjamin,Racki Adriana,Shah Anushka,Beluk Nancy H.,Cabral Laura,Beers Sue,Badaly Daryaneh,Lo Cecilia,Panigrahy Ashok,Ceschin Rafael

Abstract

ABSTRACTThe relationship between increased cerebral spinal fluid (CSF) ventricular compartments, structural and microstructural dysmaturation, and executive function in patients with congenital heart disease (CHD) is unknown. Here, we leverage a novel machine-learning data-driven technique to delineate interrelationships between CSF ventricular volume, structural and microstructural alterations, clinical risk factors, and sub-domains of executive dysfunction in adolescent CHD patients. We trained random forest regression models to predict measures of executive function (EF) from the NIH Toolbox, the Delis-Kaplan Executive Function System (D-KEFS), and the Behavior Rating Inventory of Executive Function (BRIEF) and across three subdomains of EF – mental flexibility, working memory, and inhibition. We estimated the best parameters for the random forest algorithm via a randomized grid search of parameters using 10-fold cross-validation on the training set only. The best parameters were then used to fit the model on the full training set and validated on the test set. Algorithm performance was measured using root-mean squared-error (RMSE). As predictors, we included patient clinical variables, perioperative clinical measures, microstructural white matter (diffusion tensor imaging- DTI), and structural volumes (volumetric magnetic resonance imaging- MRI). Structural white matter was measured using along-tract diffusivity measures of 13 inter-hemispheric and cortico-association fibers. Structural volumes were measured using FreeSurfer and manual segmentation of key structures. Variable importance was measured by the average Gini-impurity of each feature across all decision trees in which that feature is present in the model, and functional ontology mapping (FOM) was used to measure the degree of overlap in feature importance for each EF subdomain and across subdomains. We found that CSF structural properties (including increased lateral ventricular volume and reduced choroid plexus volumes) in conjunction with proximate cortical projection and paralimbic-related association white matter tracts that straddle the lateral ventricles and distal paralimbic-related subcortical structures (basal ganglia, hippocampus, cerebellum) are predictive of two-specific subdomains of executive dysfunction in CHD patients: cognitive flexibility and inhibition. These findings in conjunction with combined RF models that incorporated clinical risk factors, highlighted important clinical risk factors, including the presence of microbleeds, altered vessel volume, and delayed PDA closure, suggesting that CSF-interstitial fluid clearance, vascular pulsatility, and glymphatic microfluid dynamics may be pathways that are impaired in CHD, providing mechanistic information about the relationship between CSF and executive dysfunction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3