DiGAS: Differential gene allele spectrum as descriptor in genetic studies

Author:

Aparo AntoninoORCID,Bonnici VincenzoORCID,Avesani SimoneORCID,Cascione LucianoORCID,Giugno RosalbaORCID

Abstract

AbstractDiagnosing subjects in complex genetic diseases is a very challenging task. Computational methodologies exploit information at genotype level by taking into account single nucleotide polymorphisms (SNP). They leverage the result of genome-wide association studies analysis to assign a statistical significance to each SNP. Recent methodologies extend such an approach by aggregating SNP significance at genetic level in order to identify genes that are related to the condition under study. However, such methodologies still suffer from the initial single-SNP analysis. Here, we present DiGAS, a tool for diagnosing genetic conditions by computing significance, by means of SNP information, but directly at the gene level. Such an approach is based on a generalized notion of allele spectrum, which evaluates the complete genetic alterations of the SNP set composing a gene at population level. Statistical significance of a gene is then evaluated by means of a differential analysis between the healthy and ill portions of the population. Tests, performed on well-established data sets regarding Alzheimer’s disease, show that DiGAS outperforms the state-of-the-art in distinguishing between ill and healthy subjects.HighlightsWe introduce a new generalized version of allele frequency spectrum.We propose a methodology, called DiGAS, based on the new defined genomic information and independent from GWAS analysis that out-performs existing methods in distinguish healthy/ill subjects with a speed up of 5x.On a reference Alzheimer’s disease genomic datasets, ADNI, DiGAS reaches F1 score up to 0.92.DiGAS methodology manages any type of genomic features, such as genes, exons, upstream/downstream regions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3