Abstract
Plasma cell-free DNA (cfDNA) is a promising source of gene mutations for cancer detection by liquid biopsy. However, no current tests interrogate chromosomal structural variants (SVs) genome-wide. Here, we report a simple molecular and sequencing workflow called Genome-wide Analysis of Palindrome Formation (GAPF-seq) to probe DNA palindromes, a type of SV that often demarcates gene amplification. With low-throughput next-generation sequencing and automated machine learning, tumor DNA showed skewed chromosomal distributions of high-coverage 1-kb bins (HCBs), which differentiated 39 breast tumors from matched normal DNA with an average Area Under the Curve (AUC) of 0.9819. A proof-of-concept liquid biopsy study using cfDNA from prostate cancer patients and healthy individuals yielded an average AUC of 0.965. HCBs on the X chromosome emerged as a determinant feature and were associated with androgen receptor gene amplification. As a novel agnostic liquid biopsy approach, GAPF-seq could fill the technological gap offering unique cancer-specific SV profiles.
Publisher
Cold Spring Harbor Laboratory