Criticality of resting-state EEG predicts perturbational complexity and level of consciousness during anesthesia

Author:

Maschke CharlotteORCID,O’Byrne JordanORCID,Colombo Michele Angelo,Boly Melanie,Gosseries Olivia,Laureys Steven,Rosanova Mario,Jerbi KarimORCID,Blain-Moraes StefanieORCID

Abstract

1AbstractConsciousness has been proposed to be supported by electrophysiological patterns poised at criticality, a dynamical regime which exhibits adaptive computational properties, maximally complex patterns and divergent sensitivity to perturbation. Here, we investigated dynamical properties of the resting-state electroencephalogram of healthy subjects undergoing general anesthesia with propofol, xenon or ketamine. We then studied the relation of these dynamic properties with the perturbational complexity index (PCI), which has shown remarkably high sensitivity in detecting consciousness independent of behavior. All participants were unresponsive under anesthesia, while consciousness was retained only during ketamine anesthesia (in the form of vivid dreams)., enabling an experimental dissociation between unresponsiveness and unconsciousness. We estimated (i) avalanche criticality, (ii) chaoticity, and (iii) criticality-related measures, and found that states of unconsciousness were characterized by a distancing from both the edge of activity propagation and the edge of chaos. We were then able to predict individual subjects’ PCI (i.e., PCImax) with a mean absolute error below 7%. Our results establish a firm link between the PCI and criticality and provide further evidence for the role of criticality in the emergence of consciousness.2Significance StatementComplexity has long been of interest in consciousness science and had a fundamental impact on many of today’s theories of consciousness. The perturbational complexity index (PCI) uses the complexity of the brain’s response to cortical perturbations to quantify the presence of consciousness. We propose criticality as a unifying framework underlying maximal complexity and sensitivity to perturbation in the conscious brain. We demonstrate that criticality measures derived from resting-state electroencephalography can distinguish conscious from unconscious states, using propofol, xenon and ketamine anesthesia, and from these measures we were able to predict the PCI with a mean error below 7%. Our results support the hypothesis that critical brain dynamics are implicated in the emergence of consciousness and may provide new directions for the assessment of consciousness.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3