Cortical and behavioural tracking of rhythm in music: Effects of pitch predictability, enjoyment, and expertise

Author:

Keitel AnneORCID,Pelofi Claire,Guan Xinyi,Watson Emily,Wight Lucy,Allen Sarah,Mencke IrisORCID,Keitel ChristianORCID,Rimmele JohannaORCID

Abstract

AbstractCortical tracking of stimulus features (such as the envelope) is a crucial tractable neural mechanism, allowing us to investigate how we process continuous music. We here tested whether cortical and behavioural tracking of beat, typically related to rhythm processing, are modulated by pitch predictability. In two experiments (n=20, n=52), participants’ ability to tap along to the beat of musical sequences was measured for tonal (high pitch predictability) and atonal (low pitch predictability) music. In Experiment 1, we additionally measured participants’ EEG and analysed cortical tracking of the acoustic envelope and of pitch surprisal (using IDyOM). In both experiments, finger-tapping performance was better in the tonal than the atonal condition, indicating a positive effect of pitch predictability on behavioural rhythm processing. Neural data revealed that the acoustic envelope was tracked stronger while listening to atonal than tonal music, potentially reflecting listeners’ violated pitch expectations. Our findings show that cortical envelope tracking, beyond reflecting musical rhythm processing, is modulated by pitch predictability (as well as musical expertise and enjoyment). Stronger cortical surprisal tracking was linked to overall worse envelope tracking, and worse finger-tapping performance for atonal music. Specifically, the low pitch predictability in atonal music seems to draw attentional resources resulting in a reduced ability to follow the rhythm behaviourally. Overall, cortical envelope and surprisal tracking were differentially related to behaviour in tonal and atonal music, likely reflecting differential processing under conditions of high and low predictability. Taken together, our results show diverse effects of pitch predictability on musical rhythm processing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3