A cautionary tale about properly vetting datasets used in supervised learning predicting metabolic pathway involvement

Author:

Huckvale Erik D.ORCID,Moseley Hunter N.B.ORCID

Abstract

AbstractThe mapping of metabolite-specific data to pathways within cellular metabolism is a major data analysis step needed for biochemical interpretation. A variety of machine learning approaches, particularly deep learning approaches, have been used to predict these metabolite-to-pathway mappings, utilizing a training dataset of known metabolite-to-pathway mappings. A few such training datasets have been derived from the Kyoto Encyclopedia of Gene and Genomes (KEGG). However, several prior published machine learning approaches utilized an erroneous KEGG-derived training dataset that used SMILES molecular representations strings (KEGG-SMILES dataset) and contained a sizable proportion (∼26%) duplicate entries. The presence of so many duplicates taint the training and testing sets generated from k-fold cross-validation of the KEGG-SMILES dataset. Therefore, the k-fold cross-validation performance of the resulting machine learning models was grossly inflated by the erroneous presence of these duplicate entries. Here we describe and evaluate the KEGG-SMILES dataset so that others may avoid using it. We also identify the prior publications that utilized this erroneous KEGG-SMILES dataset so their machine learning results can be properly and critically evaluated. In addition, we demonstrate the reduction of model k-fold cross-validation performance after de-duplicating the KEGG-SMILES dataset. This is a cautionary tale about properly vetting prior published benchmark datasets before using them in machine learning approaches. We hope others will avoid similar mistakes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3