Effects of ocean acidification on red king crab larval survival and development

Author:

Long W. ChristopherORCID,Conrad Allie,Gardner Jennifer,Foy Robert J.

Abstract

AbstractOcean acidification, a decrease in oceanic pH resulting from the uptake of anthropogenic CO2, can be a significant stressor for marine organisms. In this study, we reared red king crab larvae from hatching to the first crab stage in four different pH treatments: current surface ambient, diel fluctuation to mimic larval migration between the surface and mixed layer under current ambient conditions, pH 7.8, and pH 7.5. Larvae were monitored throughout development and the average length of each stage was determined. At each of the zoeal stages, the glaucothoe stage, and the first crab stage, we measured survival, morphometry, dry mass, and carbon, nitrogen, calcium, and magnesium content. Red king crab larvae were highly resilient to ocean acidification. There were no differences among treatments in survival or in average stage length. Although there were clear ontogenetic trends in size, weight, and elemental composition, most of these did not vary with pH treatment. Zoeal morphology did not vary among treatments, although glaucothoe and C1 crabs were slightly smaller in pH 7.8 than in the ambient treatment. Ambient larvae also had a slightly higher mass than pH 7.8 larvae but not pH 7.5. Ambient larvae had higher magnesium contents than pH 7.8 and pH 7.5, but calcium levels were the same. Ambient larvae also had slightly lower carbon and nitrogen content than pH 7.8 and pH 7.5 larvae but only in the 4th zoeal stage. Overall this study suggests that red king crab larvae are well adapted to a wide range of pH conditions and are unlikely to be significantly affected by ocean acidification levels projected for the next two centuries.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3