TMEM65 regulates NCLX-dependent mitochondrial calcium efflux

Author:

Garbincius Joanne F.ORCID,Salik OnielORCID,Cohen Henry M.ORCID,Choya-Foces CarmenORCID,Mangold Adam S.,Makhoul Angelina D.,Schmidt Anna E.,Khalil Dima Y.,Doolittle Joshua J.,Wilkinson Anya S.,Murray Emma K.ORCID,Lazaropoulos Michael P.ORCID,Hildebrand Alycia N.,Tomar DhanendraORCID,Elrod John W.ORCID

Abstract

AbstractThe balance between mitochondrial calcium (mCa2+) uptake and efflux regulates ATP production, but if perturbed causes energy starvation ormCa2+overload and cell death. The mitochondrial sodium-calcium exchanger, NCLX, is a critical route ofmCa2+efflux in excitable tissues, such as the heart and brain, and animal models support NCLX as a promising therapeutic target to limit pathogenicmCa2+overload. However, the mechanisms that regulate NCLX activity remain largely unknown. We used proximity biotinylation proteomic screening to identify the NCLX interactome and define novel regulators of NCLX function. Here, we discover the mitochondrial inner membrane protein, TMEM65, as an NCLX-proximal protein that potently enhances sodium (Na+)-dependentmCa2+efflux. Mechanistically, acute pharmacologic NCLX inhibition or genetic deletion of NCLX ablates the TMEM65-dependent increase inmCa2+efflux. Further, loss-of-function studies show that TMEM65 is required for Na+-dependentmCa2+efflux. Co-fractionation andin silicostructural modeling of TMEM65 and NCLX suggest these two proteins exist in a common macromolecular complex in which TMEM65 directly stimulates NCLX function. In line with these findings, knockdown ofTmem65in mice promotesmCa2+overload in the heart and skeletal muscle and impairs both cardiac and neuromuscular function. We further demonstrate thatTMEM65deletion causes excessive mitochondrial permeability transition, whereas TMEM65 overexpression protects against necrotic cell death during cellular Ca2+stress. Collectively, our results show that loss of TMEM65 function in excitable tissue disrupts NCLX-dependentmCa2+efflux, causing pathogenicmCa2+overload, cell death and organ-level dysfunction, and that gain of TMEM65 function mitigates these effects. These findings demonstrate the essential role of TMEM65 in regulating NCLX-dependentmCa2+efflux and suggest modulation of TMEM65 as a novel strategy for the therapeutic control ofmCa2+homeostasis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3