Inferring therapeutic vulnerability within tumors through integration of pan-cancer cell line and single-cell transcriptomic profiles

Author:

Zhang Weijie,Maeser Danielle,Lee Adam,Huang Yingbo,Gruener Robert F.,Abdelbar Israa G.,Jena Sampreeti,Patel Anand G.ORCID,Huang R. Stephanie

Abstract

AbstractSingle-cell RNA sequencing greatly advanced our understanding of intratumoral heterogeneity through identifying tumor subpopulations with distinct biologies. However, translating biological differences into treatment strategies is challenging, as we still lack tools to facilitate efficient drug discovery that tackles heterogeneous tumors. One key component of such approaches tackles accurate prediction of drug response at the single-cell level to offer therapeutic options to specific cell subpopulations. Here, we present a transparent computational framework (nicknamed scIDUC) to predict therapeutic efficacies on an individual-cell basis by integrating single-cell transcriptomic profiles with large, data-rich pan-cancer cell line screening datasets. Our method achieves high accuracy, with predicted sensitivities easily able to separate cells into their true cellular drug resistance status as measured by effect size (Cohen’s d > 1.0). More importantly, we examine our method’s utility with three distinct prospective tests covering different diseases (rhabdomyosarcoma, pancreatic ductal adenocarcinoma, and castration-resistant prostate cancer), and in each our predicted results are accurate and mirrored biological expectations. In the first two, we identified drugs for cell subpopulations that are resistant to standard-of-care (SOC) therapies due to intrinsic resistance or effects of tumor microenvironments. Our results showed high consistency with experimental findings from the original studies. In the third test, we generated SOC therapy resistant cell lines, used scIDUC to identify efficacious drugs for the resistant line, and validated the predictions with in-vitro experiments. Together, scIDUC quickly translates scRNA-seq data into drug response for individual cells, displaying the potential as a first-line tool for nuanced and heterogeneity-aware drug discovery.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3