A foundation model for bioactivity prediction using pairwise meta-learning

Author:

Feng Bin,Liu Zequn,Huang Nanlan,Xiao Zhiping,Zhang Haomiao,Mirzoyan Srbuhi,Xu Hanwen,Hao Jiaran,Xu Yinghui,Zhang Ming,Wang Sheng

Abstract

AbstractCompound bioactivity plays an important role in different stages of drug development and discovery. Existing machine learning approaches have poor generalization ability in compound bioactivity prediction due to the small number of compounds in each assay and incompatible measurements among assays. Here, we propose ActFound, a foundation model for bioactivity prediction trained on 2.3 million experimentally-measured bioactivity compounds and 50, 869 assays from ChEMBL and BindingDB. The key idea of ActFound is to employ pairwise learning to learn the relative value differences between two compounds within the same assay to circumvent the incompatibility among assays. ActFound further exploits meta-learning to jointly optimize the model from all assays. On six real-world bioactivity datasets, ActFound demonstrates accurate in-domain prediction and strong generalization across datasets, assay types, and molecular scaffolds. We also demonstrated that ActFound can be used as an accurate alternative to the leading computational chemistry software FEP+(OPLS4) by achieving comparable performance when only using a few data points for fine-tuning. The promising results of ActFound indicate that ActFound can be an effective foundation model for a wide range of tasks in compound bioactivity prediction, paving the path for machine learning-based drug development and discovery.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3