A statistical framework for powerful multi-trait rare variant analysis in large-scale whole-genome sequencing studies
Author:
Li XihaoORCID, Chen Han, Selvaraj Margaret Sunitha, Van Buren EricORCID, Zhou HufengORCID, Wang Yuxuan, Sun RyanORCID, McCaw Zachary R.ORCID, Yu Zhi, Arnett Donna K.ORCID, Bis Joshua C.ORCID, Blangero JohnORCID, Boerwinkle Eric, Bowden Donald W., Brody Jennifer A., Cade Brian E.ORCID, Carson April P.ORCID, Carlson Jenna C.ORCID, Chami NathalieORCID, Chen Yii-Der IdaORCID, Curran Joanne E.ORCID, de Vries Paul S.ORCID, Fornage MyriamORCID, Franceschini NoraORCID, Freedman Barry I.ORCID, Gu CharlesORCID, Heard-Costa Nancy L.ORCID, He Jiang, Hou Lifang, Hung Yi-Jen, Irvin Marguerite R.ORCID, Kaplan Robert C., Kardia Sharon L.R., Kelly TanikaORCID, Konigsberg IainORCID, Kooperberg CharlesORCID, Kral Brian G.ORCID, Li ChangweiORCID, Loos Ruth J.F.ORCID, Mahaney Michael C.ORCID, Martin Lisa W., Mathias Rasika A.ORCID, Minster Ryan L.ORCID, Mitchell Braxton D.ORCID, Montasser May E., Morrison Alanna C.ORCID, Palmer Nicholette D., Peyser Patricia A.ORCID, Psaty Bruce M.ORCID, Raffield Laura M.ORCID, Redline SusanORCID, Reiner Alexander P.ORCID, Rich Stephen S., Sitlani Colleen M.ORCID, Smith Jennifer A., Taylor Kent D.ORCID, Tiwari HemantORCID, Vasan Ramachandran S., Wang Zhe, Yanek Lisa R.ORCID, Yu Bing, Rice Kenneth M.ORCID, Rotter Jerome I.ORCID, Peloso Gina M.ORCID, Natarajan PradeepORCID, Li ZilinORCID, Liu ZhonghuaORCID, Lin XihongORCID,
Abstract
AbstractLarge-scale whole-genome sequencing (WGS) studies have improved our understanding of the contributions of coding and noncoding rare variants to complex human traits. Leveraging association effect sizes across multiple traits in WGS rare variant association analysis can improve statistical power over single-trait analysis, and also detect pleiotropic genes and regions. Existing multi-trait methods have limited ability to perform rare variant analysis of large-scale WGS data. We propose MultiSTAAR, a statistical framework and computationally-scalable analytical pipeline for functionally-informed multi-trait rare variant analysis in large-scale WGS studies. MultiSTAAR accounts for relatedness, population structure and correlation among phenotypes by jointly analyzing multiple traits, and further empowers rare variant association analysis by incorporating multiple functional annotations. We applied MultiSTAAR to jointly analyze three lipid traits (low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides) in 61,861 multi-ethnic samples from the Trans-Omics for Precision Medicine (TOPMed) Program. We discovered new associations with lipid traits missed by single-trait analysis, including rare variants within an enhancer ofNIPSNAP3Aand an intergenic region on chromosome 1.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|