A statistical framework for powerful multi-trait rare variant analysis in large-scale whole-genome sequencing studies

Author:

Li XihaoORCID,Chen Han,Selvaraj Margaret Sunitha,Van Buren EricORCID,Zhou HufengORCID,Wang Yuxuan,Sun RyanORCID,McCaw Zachary R.ORCID,Yu Zhi,Arnett Donna K.ORCID,Bis Joshua C.ORCID,Blangero JohnORCID,Boerwinkle Eric,Bowden Donald W.,Brody Jennifer A.,Cade Brian E.ORCID,Carson April P.ORCID,Carlson Jenna C.ORCID,Chami NathalieORCID,Chen Yii-Der IdaORCID,Curran Joanne E.ORCID,de Vries Paul S.ORCID,Fornage MyriamORCID,Franceschini NoraORCID,Freedman Barry I.ORCID,Gu CharlesORCID,Heard-Costa Nancy L.ORCID,He Jiang,Hou Lifang,Hung Yi-Jen,Irvin Marguerite R.ORCID,Kaplan Robert C.,Kardia Sharon L.R.,Kelly TanikaORCID,Konigsberg IainORCID,Kooperberg CharlesORCID,Kral Brian G.ORCID,Li ChangweiORCID,Loos Ruth J.F.ORCID,Mahaney Michael C.ORCID,Martin Lisa W.,Mathias Rasika A.ORCID,Minster Ryan L.ORCID,Mitchell Braxton D.ORCID,Montasser May E.,Morrison Alanna C.ORCID,Palmer Nicholette D.,Peyser Patricia A.ORCID,Psaty Bruce M.ORCID,Raffield Laura M.ORCID,Redline SusanORCID,Reiner Alexander P.ORCID,Rich Stephen S.,Sitlani Colleen M.ORCID,Smith Jennifer A.,Taylor Kent D.ORCID,Tiwari HemantORCID,Vasan Ramachandran S.,Wang Zhe,Yanek Lisa R.ORCID,Yu Bing,Rice Kenneth M.ORCID,Rotter Jerome I.ORCID,Peloso Gina M.ORCID,Natarajan PradeepORCID,Li ZilinORCID,Liu ZhonghuaORCID,Lin XihongORCID,

Abstract

AbstractLarge-scale whole-genome sequencing (WGS) studies have improved our understanding of the contributions of coding and noncoding rare variants to complex human traits. Leveraging association effect sizes across multiple traits in WGS rare variant association analysis can improve statistical power over single-trait analysis, and also detect pleiotropic genes and regions. Existing multi-trait methods have limited ability to perform rare variant analysis of large-scale WGS data. We propose MultiSTAAR, a statistical framework and computationally-scalable analytical pipeline for functionally-informed multi-trait rare variant analysis in large-scale WGS studies. MultiSTAAR accounts for relatedness, population structure and correlation among phenotypes by jointly analyzing multiple traits, and further empowers rare variant association analysis by incorporating multiple functional annotations. We applied MultiSTAAR to jointly analyze three lipid traits (low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides) in 61,861 multi-ethnic samples from the Trans-Omics for Precision Medicine (TOPMed) Program. We discovered new associations with lipid traits missed by single-trait analysis, including rare variants within an enhancer ofNIPSNAP3Aand an intergenic region on chromosome 1.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3