Machine Learning Based Identification and Characterization of Mast cells in Eosinophilic Esophagitis

Author:

Zhang Simin,Caldwell Julie M.,Rochman Mark,Collins Margaret H.,Rothenberg Marc E.

Abstract

AbstractBackgroundEosinophilic esophagitis (EoE) is diagnosed and monitored using esophageal eosinophil levels; however, EoE also exhibits a marked, understudied esophageal mastocytosis.ObjectiveUsing machine learning, we localized and characterized esophageal mast cells to decipher their potential role in disease pathology.MethodsEsophageal biopsy samples (EoE, control) were stained for mast cells by anti-tryptase and imaged using immunofluorescence; high-resolution whole tissue images were digitally assembled. Machine learning software was trained to identify, enumerate, and characterize mast cells, designated Mast Cell-Artificial Intelligence (MC-AI).ResultsMC-AI enumerated cell counts with high accuracy. During active EoE, epithelial mast cells increased and lamina propria (LP) mast cells decreased. In controls and EoE remission patients, papillae had the highest mast cell density and negatively correlated with epithelial mast cell density. Mast cell density in the epithelium and papillae correlated with the degree of epithelial eosinophilic inflammation, basal zone hyperplasia, and LP fibrosis. MC-AI detected greater mast cell degranulation in the epithelium, papillae, and LP in EoE patients compared with control individuals. Mast cells were localized further from the basement membrane in active EoE than EoE remission and controls individuals but were closer than eosinophils to the basement membrane in active EoE.ConclusionUsing MC-AI, we identified a distinct population of homeostatic esophageal papillae mast cells; during active EoE, this population decreases, undergoes degranulation, negatively correlates with epithelial mast cell levels, and significantly correlates with distinct histologic features. Overall, MC-AI provides a means to understand the potential involvement of mast cells in EoE and other disorders.Clinical ImplicationWe have developed a methodology for identifying, enumerating, and characterizing mast cells using artificial intelligence; this has been applied to decipher eosinophilic esophagitis and provides a platform approach for other diseases.Capsule SummaryA machine learning protocol for identifying mast cells, designated Mast Cell–Artificial Intelligence, readily identified spatially distinct and dynamic populations of mast cells in EoE, providing a platform to better understand this cell type in EoE and other diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3