AlphaMissense is better correlated with functional assays of missense impact than earlier prediction algorithms

Author:

Ljungdahl AliciaORCID,Kohani SayehORCID,Page Nicholas F.ORCID,Wells Eloise S.ORCID,Wigdor Emilie M.ORCID,Dong ShanORCID,Sanders Stephan J.ORCID

Abstract

AbstractMissense variants that alter a single amino acid in the encoded protein contribute to many human disorders but pose a substantial challenge in interpretation. Though these variants can be reliably identified through sequencing, distinguishing the clinically significant ones remains difficult, such that “Variants of Unknown Significance” outnumber those classified as “Pathogenic” or “Likely Pathogenic.” Numerousin silicoapproaches have been developed to predict the functional impact of missense variants to inform clinical interpretation, the latest being AlphaMissense, which uses artificial intelligence methods trained on predicted protein structure. To independently assess the performance of AlphaMissense and 38 other predictors of missense severity, we compared predictions to data from multiplexed assays of variant effect (MAVE). MAVE experiments generate almost every possible individual amino acid change in a gene and measure their functional impact using a high-throughput assay. Assessing 17,696 variants across five genes (DDX3X, MSH2, PTEN, KCNQ4, andBRCA1), we find that AlphaMissense is consistently one of the top five algorithms based on correlation with functional impact and is the best-correlated algorithm for two genes. We conclude that AlphaMissense represents the current best-in-class predictor by this metric; however, the improvement over other algorithms is modest. We note that multiple missense predictors, including AlphaMissense, appear to overcall variants as pathogenic despite minimal functional impact and that substantially more high-quality training data, including consistently analyzed patient cohorts and MAVE analyses, are required to improve accuracy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3