Seminal plasma inhibits Chlamydia trachomatis infectionin vitro, and may have consequences on mucosal immunity

Author:

Reot Louis,Adapen Cindy,Cannou Claude,Nunez Natalia,Lakoum Sabrine,Pimienta Camille,Lacroix Laetitia,Binois Olivier,Frydman Nelly,Nugeyre Marie-Thérèse,Le Grand Roger,Menu ElisabethORCID

Abstract

AbstractSeminal plasma (SP) is the main vector ofC. trachomatis(CT) during heterosexual transmission from male to female. It has immunomodulatory properties and impacts the susceptibility to HIV-1 infection, but its role has not been explored during CT infection. In the female reproductive tract (FRT), CT infection induces cytokine production and neutrophil recruitment. The role of neutrophils during CT infection is partially described, they could be at the origin of the pathology observed during CT infection. During this study, we developed an experimentalin vitromodel to characterize the impact of CT infection and SP on endocervical epithelial cell immune response in the FRT. We also studied the impact of the epithelial cell response on neutrophil phenotype and functions. We showed that the production by epithelial cells of pro-inflammatory cytokines increased during CT infection. Moreover, the pool of SP as well as individuals SP inhibited CT infection in a dose-dependent manner. The pool of SP inhibited cytokine production in a dose-dependent manner. The pool of SP altered gene expression profiles of infected cells. The culture supernatants of cells infected or not with CT, in presence or not of the pool of SP, had an impact on neutrophil phenotype and functions: they affected markers of neutrophil maturation, activation and adhesion capacity, as well as the survival, ROS production and phagocytosis ability. This study proposes a novel approach to study the impact of the environment on the phenotype and functions of neutrophils in the FRT. It highlights the impact of the factors of the FRT environment, in particular SP and CT infection, on the mucosal inflammation and the need to take into account the SP component while studying sexually transmitted infections during heterosexual transmission from male to female.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3