Diatom pyrenoids are encased in a protein shell that enables efficient CO2fixation

Author:

Shimakawa GingaORCID,Demulder ManonORCID,Flori SerenaORCID,Kawamoto AkihiroORCID,Tsuji YoshinoriORCID,Nawaly HermanusORCID,Tanaka AtsukoORCID,Tohda ReiORCID,Ota Tadayoshi,Matsui Hiroaki,Morishima Natsumi,Okubo Ryosuke,Wietrzynski WojciechORCID,Lamm LorenzORCID,Righetto Ricardo D.ORCID,Uwizeye ClarisseORCID,Gallet BenoitORCID,Jouneau Pierre-HenriORCID,Gerle ChristophORCID,Kurisu GenjiORCID,Finazzi GiovanniORCID,Engel Benjamin D.ORCID,Matsuda YusukeORCID

Abstract

AbstractPyrenoids are subcompartments of algal chloroplasts that concentrate Rubisco enzymes and their CO2substrate, thereby increasing the efficiency of carbon fixation. Diatoms perform up to 20% of global CO2fixation, but their pyrenoids remain poorly characterized at a molecular level. Here, we usedin vivophoto-crosslinking to catalogue components of diatom pyrenoids and identified a pyrenoid shell (PyShell) protein, which we localized to the pyrenoid periphery of both the pennate diatom,Pheaodactylum tricornutum, and the centric diatom,Thalassiosira pseudonana.In situcryo-electron tomography (cryo-ET) revealed that the pyrenoids of both diatom species are encased in a lattice-like protein sheath. Disruption of PyShell expression inT. pseudonanaresulted in the absence of this protein sheath, altered pyrenoid morphology, and a high-CO2requiring phenotype, with impaired growth and reduced carbon fixation efficiency under standard atmospheric conditions. Pyrenoids in mutant cells were fragmented and lacked the thylakoid membranes that normally traverse the Rubisco matrix, demonstrating how the PyShell plays a guiding role in establishing pyrenoid architecture. Recombinant PyShell proteins self-assembled into helical tubes, enabling us to determine a 3.0 Å-resolution PyShell structure. We then fit thisin vitrostructure into anin situsubtomogram average of the pyrenoid’s protein sheath, yielding a putative atomic model of the PyShell within diatom cells. The structure and function of the diatom PyShell provides a new molecular view of how CO2is assimilated in the ocean, a crucial biome that is on the front lines of climate change.

Publisher

Cold Spring Harbor Laboratory

Reference94 articles.

1. Evolution and functional diversification of fructose bisphosphate aldolase genes in photosynthetic marine diatoms;Molecular Biology and Evolution,2011

2. Condensation of Rubisco into a proto-pyrenoid in higher plant chloroplasts;Nature Communications,2020

3. Pyrenoids: CO2-fixing phase separated liquid organelles;Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research,2021

4. Chloroplast structure of diatoms of different classes;Cell and Tissue Biology,2009

5. New discoveries expand possibilities for carboxysome engineering;Curr Opin Microbiol,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3