Network size affects the complexity of activity in human iPSC-derived neuronal populations

Author:

Uzun Yavuz Selim,Santos Renata,Marchetto Maria C.,Padmanabhan Krishnan

Abstract

SUMMARYMulti-electrode recording of neural activity in cultures offer opportunities for understanding how the structure of a network gives rise to function. Although it is hypothesized that network size is critical for determining the dynamics of activity, this relationship in human neural cultures remains largely unexplored. By applying new methods for analyzing neural activity to human iPSC derived cultures at either low-densities or high-densities, we uncovered the significant impacts that neuron number has on the individual neurophysiological properties of cells (such as firing rates), the collective behavior of the networks these cultures formed (as measured by entropy), and the relationship between the two. As a result, simply changing the densities of neurons generated dynamics and network behavior that differed not just in degree, but in kind. Beyond revealing the relationship between network structure and function, our findings provide a novel analytical framework to study diseases where network level activity is affected.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3