Differences in predicted rates of vaginal births after cesarean across racial groups in a ‘race-neutral’ model

Author:

Suresh Anjali,O’nell Katie

Abstract

AbstractWhen physicians and pregnant patients make decisions about whether to pursue a vaginal birth or cesarean, there are many factors at play. While vaginal birth can have health benefits for both parent and child, there are significant safety risks. In order to minimize these risks, physicians use predictive models to determine how likely patients are to have successful vaginal births after cesareans (VBAC). For many years, these predictive models included race as a variable. This decision recently came under fire, and the Maternal Fetal Medicine Unit (MFMU) published a calculator that did not include race as a variable but still predicted VBAC success with high accuracy. A large body of work in machine learning has highlighted that supposedly de-biased systems often re-code sensitive variables like race in terms of proxy variables. In order to determine if this was the case in this calculator, we replicated their formula, then found base-rate statistics of all the input variables for three different racial groups: Black, White, and Asian. We found that the distribution of VBAC probabilities for our simulated patients from these three groups was indeed significantly different from each other. Further, the predicted VBAC rates increased as a function of societal marginalization: Black patients were 47.6% likely to have a successful VBAC, Asian patients had a 48.6% probability, and White patients had a 49.4% probability. While these values are all within a few percentage points of each other, the differences in these simulated distributions show how there may still be underlying disparities in the maternal healthcare system.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3