Real-Time Computation of Brain E-Field for Enhanced Transcranial Magnetic Stimulation Neuronavigation and Optimization

Author:

Hasan Nahian I.ORCID,Dannhauer Moritz,Wang Dezhi,Deng Zhi-DeORCID,Gomez Luis J.

Abstract

ABSTRACTTranscranial Magnetic Stimulation (TMS) coil placement and pulse wave-form current are often chosen to achieve a specified E-field dose on targeted brain regions. TMS neuronavigation could be improved by including real-time accurate distributions of the E-field dose on the cortex. We introduce a method and develop software for computing brain E-field distributions in real-time enabling easy integration into neuronavigation and with the same accuracy as 1st-order finite element method (FEM) solvers. Initially, a spanning basis set (< 400) of E-fields generated by white noise magnetic currents on a surface separating the head and permissible coil placements are orthogonalized to generate the modes. Subsequently, Reciprocity and Huygens’ principles are utilized to compute fields induced by the modes on a surface separating the head and coil by FEM, which are used in conjunction with online (real-time) computed primary fields on the separating surface to evaluate the mode expansion. We conducted a comparative analysis of E-fields computed by FEM and in real-time for eight subjects, utilizing two head model types (SimNIBS’s ‘headreco’ and ‘mri2mesh’ pipeline), three coil types (circular, double-cone, and Figure-8), and 1000 coil placements (48,000 simulations). The real-time computation for any coil placement is within 4 milliseconds (ms), for 400 modes, and requires less than 4 GB of memory on a GPU. Our solver is capable of computing E-fields within 4 ms, making it a practical approach for integrating E-field information into the neuronavigation systems without imposing a significant overhead on frame generation (20 and 50 frames per second within 50 and 20 ms, respectively).

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3