VLIB: Unveiling insights through Visual and Linguistic Integration of Biorxiv data relevant to cancer via Multimodal Large Language Model

Author:

Prabhakar Vignesh,Liu KaiORCID

Abstract

AbstractThe field of cancer research has greatly benefited from the wealth of new knowledge provided by research articles and preprints on platforms like Biorxiv. This study investigates the role of scientific figures and their accompanying captions in enhancing our comprehension of cancer. Leveraging the capabilities of Multimodal Large Language Models (MLLMs), we conduct a comprehensive analysis of both visual and linguistic data in biomedical literature. Our work introduces VLIB, a substantial scientific figure-caption dataset generated from cancer biology papers on Biorxiv. After thorough preprocessing, which includes figure-caption pair extraction, sub-figure identification, and text normalization, VLIB comprises over 500,000 figures from more than 70,000 papers, each accompanied by relevant captions. We fine-tune baseline MLLMs using our VLIB dataset for downstream vision-language tasks, such as image captioning and visual question answering (VQA), to assess their performance. Our experimental results underscore the vital role played by scientific figures, including molecular structures, histological images, and data visualizations, in conjunction with their captions, in facilitating knowledge translation through MLLMs. Specifically, we achieved a ROUGE score of 0.66 for VQA and 0.68 for image captioning, as well as a BLEU score of 0.72 for VQA and 0.70 for image captioning. Furthermore, our investigation highlights the potential of MLLMs to bridge the gap between artificial intelligence and domain experts in the field of cancer biology.

Publisher

Cold Spring Harbor Laboratory

Reference32 articles.

1. Sever, R. , Roeder, T. , Hindle, S. , Sussman, L. , Black, K. J. , Argentine, J. , … & Inglis, J. R. (2019). bioRxiv: the preprint server for biology. BioRxiv, 833400.

2. Zhang, J. , Huang, J. , Jin, S. , & Lu, S. (2023). Vision-language models for vision tasks: A survey. arXiv preprint arXiv:2304.00685.

3. Zhang, S. , Xu, Y. , Usuyama, N. , Bagga, J. , Tinn, R. , Preston, S. , … & Poon, H. (2023). Large-scale domain-specific pretraining for biomedical vision-language processing. arXiv preprint arXiv:2303.00915.

4. Hsu, T. Y. , Giles, C. L. , & Huang, T. H. K. (2021). SciCap: Generating captions for scientific figures. arXiv preprint arXiv:2110.11624.

5. Visual question answering: A survey of methods and datasets;Computer Vision and Image Understanding,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3