Preventing extinction in an age of species migration and planetary change

Author:

Lundgren Erick J.ORCID,Wallach Arian D.ORCID,Svenning Jens-ChristianORCID,Schlaepfer Martin A.ORCID,Andersson Astrid L.A.ORCID,Ramp DanielORCID

Abstract

AbstractInternational and national conservation policies almost exclusively focus on conserving species in their historic native ranges, thus excluding species that have dispersed on their own accord or have been introduced by people. Given that many of these ‘migrant’ species are threatened in their native ranges, conservation goals that explicitly exclude these migrant populations may overlook opportunities to prevent extinctions and respond dynamically to rapidly changing environmental and climatic conditions. Focusing on terrestrial mammals, we quantified the extent to which migration, in this case via introductions, has provided new homes for threatened mammal species. We then devised alternative scenarios for the inclusion of migrant populations in mainstream conservation policy with the aim of preventing global species extinctions and used spatial prioritization algorithms to simulate how these scenarios could change global spatial conservation priorities. We found that 22% of all identified migrant mammals (70 species) are threatened in their native ranges, mirroring the 25% of all mammals that are threatened. Reassessing global threat statuses by combining native and migrant ranges reduced the threat status of 23 species (∼33% of threatened migrants). Thus, including migrant populations in threat assessments provides a more accurate assessment of actual global extinction risk among species. Spatial prioritization simulations showed that reimagining the role of migrant populations to prevent global species extinction could increase the importance of overlooked landscapes, particularly in central Australia. Our results indicate that these various and non-exhaustive ways to consider migrant populations, with due consideration for potential conservation conflicts with resident taxa, may provide unprecedented opportunities to prevent species extinctions. We present these alternatives and spatial simulations to stimulate discussion on how conservation ought to respond, both pragmatically and ethically, to rapid environmental change in order to best prevent extinctions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3