Deciphering Cancer Genomes with GenomeSpy: A Grammar-Based Visualization Toolkit

Author:

Lavikka KariORCID,Oikkonen JaanaORCID,Li YilinORCID,Muranen TaruORCID,Micoli GiuliaORCID,Marchi GiovanniORCID,Lahtinen AlexandraORCID,Huhtinen KaisaORCID,Lehtonen RainerORCID,Hietanen SakariORCID,Hynninen JohannaORCID,Virtanen AnniORCID,Hautaniemi SampsaORCID

Abstract

AbstractBackgroundVisualization is an indispensable facet of genomic data analysis. Despite the abundance of specialized visualization tools, there remains a distinct need for tailored solutions. However, their implementation typically requires extensive programming expertise from bioinformaticians and software developers, especially when building interactive applications. Toolkits based on visualization grammars offer a more accessible, declarative way to author new visualizations. Nevertheless, current grammar-based solutions fall short in adequately supporting the interactive analysis of large data sets with extensive sample collections, a pivotal task often encountered in cancer research.ResultsWe present GenomeSpy, a grammar-based toolkit for authoring tailored, interactive visualizations for genomic data analysis. Users can implement new visualization designs with little effort by using combinatorial building blocks that are put together with a declarative language. These fully customizable visualizations can be embedded in web pages or end-user-oriented applications. The toolkit also includes a fully customizable but user-friendly application for analyzing sample collections, which may comprise genomic and clinical data. Findings can be bookmarked and shared as links that incorporate provenance information. A distinctive element of GenomeSpy’s architecture is its effective use of the graphics processing unit (GPU) in all rendering. GPU usage enables a high frame rate and smoothly animated interactions, such as navigation within a genome. We demonstrate the utility of GenomeSpy by characterizing the genomic landscape of 753 ovarian cancer samples from patients in the DECIDER clinical trial. Our results expand the understanding of the genomic architecture in ovarian cancer, particularly the diversity of chromosomal instability. We also show how GenomeSpy enabled the discovery of clinically actionable genomic aberrations.ConclusionsGenomeSpy is a visualization toolkit applicable to a wide range of tasks pertinent to genome analysis. It offers high flexibility and exceptional performance in interactive analysis. The toolkit is open source with an MIT license, implemented in JavaScript, and available athttps://genomespy.app/.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3