Author:
Shimobayashi Shunsuke F.,Konishi Kota,Ackerman Paul J.,Taniguchi Takashi,Brangwynne Clifford P.
Abstract
Membraneless compartments known as biomolecular condensates are thought to form through liquid-liquid phase separation (LLPS). When forces are applied to the fluid interfaces of these condensates, surface fluctuation are generated, a phenomenon known as capillary waves. The spatiotemporal dynamics of these fluctuations, characterized by the amplitude and velocity, reflect the physical properties of condensates. Moreover, unraveling the nature of fluctuations near the critical point is crucial for understanding the universal physical underpinnings of phase transitions. Although fluid condensate interfaces are ubiquitous within living cells, little is known about their surface fluctuations. Here, we quantify the interface fluctuations of light-induced synthetic and endogenous nuclear condensates, including nucleoli and nuclear speckles, in real and Fourier space. Measured fluctuations align with a theory assuming thermal driving, which enables measurement of surface tension and effective viscosity. The surface tensions fall within the range of 10−6to 10−5N/m for all tested condensates; in contrast, we find significant difference of fluctuation velocities, highlighting much higher viscosity of nucleoli 104∼Pa ·s, compared to synthetic condensates and nuclear speckles. We further find that the interface fluctuations become enhanced and slower as the system nears the critical point. These findings elucidate key aspects of intracellular condensate properties, and suggest that the critical trend of surface tension is more consistent with theoretical predictions by the mean-field model than those by the 3D Ising model.
Publisher
Cold Spring Harbor Laboratory