SC-Track: a robust cell tracking algorithm for generating accurate single-cell lineages from diverse cell segmentations

Author:

Li Chengxin,Xie Shuang Shuang,Wang Jiaqi,Sharvia Septavera,Chan Kuan YoowORCID

Abstract

AbstractComputational analysis of fluorescent timelapse microscopy images at the single-cell level is a powerful approach to study cellular changes that dictate important cell fate decisions. Core to this approach is the need to generate reliable cell segmentations and classifications necessary for accurate quantitative analysis. Deep learning-based convolutional neural networks (CNNs) have emerged as a promising solution to these challenges. However, current CNNs are prone to produce noisy cell segmentations and classifications, which is a significant barrier to constructing accurate single-cell lineages. To address this, we developed a novel algorithm called Single Cell Track (SC-Track), which employs a hierarchical probabilistic cache cascade model based on biological observations of cell division and movement dynamics. Our results show that SC-Track performs better than a panel of publicly available cell trackers on a diverse set of cell segmentation types. This cell-tracking performance was achieved without any parameter adjustments, making SC-Track an excellent generalised algorithm that can maintain robust cell-tracking performance in varying cell segmentation qualities, cell morphological appearances and imaging conditions. Furthermore, SC-Track is equipped with a cell class correction function to improve the accuracy of cell classifications in multi-class cell segmentation time series. These features together make SC-Track a robust cell-tracking algorithm that works well with noisy cell instance segmentation and classification predictions from CNNs to generate accurate single-cell lineages and classifications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3