Negative Binomial Mixture Model for Identification of Noise in Antigen-Specificity Predictions by LIBRA-seq

Author:

Wasdin Perry T.ORCID,Abu-Shmais Alexandra A.ORCID,Irvin Michael W.,Vukovich Matthew J.ORCID,Georgiev Ivelin S.

Abstract

Structured AbstractMotivationLIBRA-seq (linking B cell receptor to antigen specificity by sequencing) provides a powerful tool for interrogating the antigen-specific B cell compartment and identifying antibodies against antigen targets of interest. Identification of noise in LIBRA-seq antigen count data is critical for improving antigen binding predictions for downstream applications including antibody discovery and machine learning technologies.ResultsIn this study, we present a method for denoising LIBRA-seq data by clustering antigen counts into signal and noise components with a negative binomial mixture model. This approach leverages the VRC01 negative control cells included in a recent LIBRA-seq study(Abu-Shmaiset al.) to provide a data-driven means for identification of technical noise. We apply this method to a dataset of nine donors representing separate LIBRA-seq experiments and show that our approach provides improved predictions for in vitro antibody-antigen binding when compared to the standard scoring method used in LIBRA-seq, despite variance in data size and noise structure across samples. This development will improve the ability of LIBRA-seq to identify antigen-specific B cells and contribute to providing more reliable datasets for future machine learning based approaches to predicting antibody-antigen binding as the corpus of LIBRA-seq data continues to grow.Availability and ImplementationJupyter notebooks detailing model fitting and figure generation in Python are available athttps://github.com/perrywasdin/mixture_model_denoising.ContactEmail:Ivelin.Georgiev@Vanderbilt.eduSupplementary InformationSupplementary figures are provided in the attached PDF.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3